Phase retrieval of low-rank matrices by anchored regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low rank Multivariate regression

We consider in this paper the multivariate regression problem, when the target regression matrix A is close to a low rank matrix. Our primary interest is in on the practical case where the variance of the noise is unknown. Our main contribution is to propose in this setting a criterion to select among a family of low rank estimators and prove a non-asymptotic oracle inequality for the resulting...

متن کامل

Higher-Order Low-Rank Regression

This paper proposes an efficient algorithm (HOLRR) to handle regression tasks where the outputs have a tensor structure. We formulate the regression problem as the minimization of a least square criterion under a multilinear rank constraint, a difficult non convex problem. HOLRR computes efficiently an approximate solution of this problem, with solid theoretical guarantees. A kernel extension i...

متن کامل

Vector Spaces of Matrices of Low Rank

In this paper we study vector spaces of matrices, all of whose elements have rank at most a given number. The problem of classifying such spaces is roughly equivalent to the problem of classifying certain torsion-free sheaves on projective spaces. We solve this problem in case the sheaf in question has first Chern class equal to 1; the characterization of the vector spaces of matrices of rank d...

متن کامل

Robust Generalized Low Rank Approximations of Matrices

In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM...

متن کامل

Optimal estimation of low rank density matrices

The density matrices are positively semi-definite Hermitian matrices of unit trace that describe the state of a quantum system. The goal of the paper is to develop minimax lower bounds on error rates of estimation of low rank density matrices in trace regression models used in quantum state tomography (in particular, in the case of Pauli measurements) with explicit dependence of the bounds on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Inference: A Journal of the IMA

سال: 2020

ISSN: 2049-8772

DOI: 10.1093/imaiai/iaaa018